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ABSTRACT

Cache eviction algorithms play a critical role in the performance
of modern data systems, yet their scalability is often limited by
the high computational overhead associated with object promo-
tions. LAzy PRoMOTION techniques have emerged as relaxations
of traditional Least-Recently-Used (LRU) methods, designed to al-
leviate lock contention and increase throughput. This work uses
production traces from real-world systems to benchmark five Lazy
PROMOTION strategies: Probabilistic-LRU, Batch-LRU, Delay-LRU,
FIFO-reinsertion, and Random-LRU. We evaluate these techniques
across miss ratio, scalability, promotion count, and a novel metric
called promotion efficiency, which measures the number of hits per
promotion. Our results reveal that Delay-LRU and FIFO-reinsertion
significantly improve promotion efficiency, whereas Batch-LRU
and Probabilistic-LRU struggle to reduce promotions without sig-
nificantly increasing miss ratio. We further explore the impact
of lazy promotion in advanced algorithms such as ARC and 2Q
and make a similar observation. Moreover, we uncover substantial
optimization potential, showing that most cache promotions are un-
necessary when equipped with oracle knowledge. To further reduce
promotions in LRU, we propose two novel enhancements—Delayed
FIFO-reinsertion (D-FR) and Age-Guided Eviction (AGE)—that re-
duce promotions by 20—60% while achieving a similar or lower
miss ratio.
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Figure 1: Left: overview of Lazy PROMOTION techniques. delay and FIFO-
reinsertion (FR) are more effective than Batch-LRU and Probabilistic-LRU on
reducing promotions and improving scalability (throughput at 16 threads)
without significantly increasing the miss ratio. Right: We introduce two
simple techniques, D-FR and AGE, to reduce promotions without increasing
miss ratio.

1 INTRODUCTION

Caching plays an important role in data systems. A cache stores a
small portion of popular objects on a fast storage device, allowing
requests to be served very quickly from the cache. Caching is now
integral to nearly every layer of modern computer systems. For ex-
ample, databases rely on the buffer pool to load data quickly [28, 37].
In MySQL, the InnoDB buffer pool [31] acts as a cache, storing fre-
quently accessed rows and index pages in memory. This reduces
disk I/0, enabling faster data retrieval and improving query perfor-
mance. Moreover, an operating system relies on the page cache to
access data swiftly [2], and a content delivery network uses caching
at the edge of the Internet to deliver images and videos to end users
cheaply and quickly [39].

The efficiency of a cache is measured by miss ratio—the propor-
tion of data requests that must be served by the backend. Reducing
miss ratio allows more requests to be served from the cache and
enables a faster and more responsive system. Besides efficiency, the
other important metric of a cache is throughput, which measures
the hits a cache can serve every second. A faster cache enables the
operator to utilize fewer computational resources, thereby enhanc-
ing the utility of caching. Lastly, modern computer servers often
have tens to hundreds of cores per socket [6, 7, 15, 53], making
scalability—the capability to scale throughput with the number of
cores, a critical requirement.
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At the core of caching is the cache eviction algorithm, which de-
termines the objects stored in the cache and the order in which they
are evicted. A good eviction algorithm maximizes the likelihood of
cache hits, thus minimizing backend accesses and reducing data
access latency. Least-Recently-Used (LRU) is the most popular evic-
tion algorithm used in many production systems [3, 18, 56]. LRU
uses a doubly-linked list to maintain objects in the order of their
last access time, positioning the most recently used item at the head
and the least recently used at the tail. When an object is accessed,
it is promoted to the head of the list. During eviction, the object
at the tail is removed. Because operations on items in the middle
of a linked list cannot be performed atomically, all the operations
in LRU require locking. This significantly limits the throughput of
an LRU cache when using multiple CPU cores, as it must wait to
acquire the lock. Although FIFO is more scalable than LRU, it has
not been widely adopted because LRU is widely considered more
efficient than FIFO, achieving a lower miss ratio [10, 17].

As scalability has increasingly become a concern for modern
cache systems, production system engineers have developed dif-
ferent relaxations of LRU promotions to mitigate the scalability
bottleneck. For example, Meta Cachelib [11] delays the promo-
tion of a recently promoted object to reduce lock contention; Meta
HHVM [45] employs a probabilistic LRU using try-lock — promote
an object to the head of the linked list only upon a successful lock
operation; Twitter Segcache [66] and Google Cliquemap [52] both
use a batched eviction; and RocksDB [21] and PostgreSQL [47] use
FIFO-reinsertion to reduce lock contention. Because these tech-
niques primarily improve scalability by reducing the number of
promotions and lock contention, similar to previous work [63], we
refer to them as Lazy PRomOTION techniques.

Despite the broad deployment of LAzy PROMOTION techniques
in production systems, there has not been a good understanding
in the effectiveness of these techniques. It is often believed that
Lazy PrRoMOTION makes a tradeoff between cache efficiency and
scalability. As a result, these relaxations are sometimes called weak
LRU [16, 29] because they sacrifice miss ratio to improve throughput
and scalability.

We implement and benchmark Lazy PRoMoTION techniques
at scale to understand their effectiveness in improving scalabil-
ity, reducing promotions, and maintaining miss ratio. We evaluate
five different Lazy PRoMOTION techniques from real-world sys-
tems: Probabilistic-LRU (§3.1), Batch-LRU (§3.2), Delay-LRU (§3.3),
FIFO-reinsertion (§3.4), and Random-LRU (§3.5) using traces from
9 different companies (Table 2), including Alibaba [36, 60], Cloud-
physics [58], Meta [4], Microsoft [40], Tencent[75], Twitter [64],
Wikipedia [61], and two content delivery networks. In total, we use
6357 traces of 346 billion requests for 2,818 TB of data.

We propose a new metric, promotion efficiency, to evaluate the
effectiveness of different Lazy PRoMOTION techniques. It measures
the (average) number of hits a promotion leads to. A Lazy Pro-
MOTION technique with high promotion efficiency indicates that
its promotions are more valuable. LRU has a mean promotion effi-
ciency of 0.037—each promotion only leads to 0.037 hits. Among
the Lazy PRoMOTION techniques, we find that Delay-LRU and FIFO-
reinsertion are most effective. When the miss ratio is within 1%
of LRU’s performance, Delay-LRU and FIFO-reinsertion have pro-
motion efficiency of as high as 0.4 and 0.3 hits per promotion,

respectively. Batch-LRU is worse, achieving less than 0.1 hits per

promotion. Probabilistic-LRU performs the worst because it ran-

domly reduces promotion without distinguishing between popular
and unpopular objects.

Many advanced eviction algorithms consist of one or more LRU
queues. Our findings are not limited to LRU. We add Lazy Promo-
TION to ARC [37] and 2Q [30]. We find that with Delay-LRU and
FIFO-reinsertion can effectively reduce the number of promotions
in ARC and 2Q, meanwhile Probabilistic-LRU and Batch-LRU are
less effective, often leading to significant increases in miss ratio.

Using Belady’s MIN [10] as a reference for optimal cache eviction,
we find that most cache promotions in LRU are unnecessary, with
only 10% needed on average. This finding underscores the potential
for optimization. Moreover, we find that promotion (reinsertion) on
eviction (as in FIFO-reinsertion) is strictly better than promotion
on cache hits. If we equip FIFO-reinsertion with future knowledge,
it can reduce promotions by over 90% on average across all 6,357
traces while also slightly reducing miss ratio.

Leveraging our findings, we introduce two simple Lazy Pro-
MOTION techniques, Delayed FIFO-reinsertion (D-FR) and Age-
Guided Eviction (AGE), to further reduce the number of promotions
and improve promotion efficiency. D-FR leverages delay in FIFO-
reinsertion to reduce promotions, while AGE utilizes recency infor-
mation to filter out unnecessary reinsertions in FIFO-reinsertion.
Our evaluations on production traces show that these techniques
achieve a lower or similar miss ratio while further reducing pro-
motions by 20% — 60% and improving the promotion efficiency on
average by more than 80%.

We make the following contributions in this paper:

e We implemented and benchmarked the effectiveness of five dif-
ferent LAzy PROMOTION techniques from real-world systems and
integrated them into advanced algorithms, including ARC and
2Q, using 6357 production traces.

e We introduced a new metric, promotion efficiency, to evaluate
how well algorithms minimize promotions while keeping a low
miss ratio. Our results show that Delay-LRU and FIFO-reinsertion
improve promotion efficiency.

o We discovered that most promotions are unnecessary, suggesting
a huge potential to further reduce promotions.

e We present two simple techniques, D-FR and AGE, to reduce the
unnecessary promotions while maintaining a similar or lower
miss ratio. Evaluation on production traces shows that they can
reduce promotions by 20-60% without impacting miss ratio.

2 BACKGROUND AND MOTIVATION

2.1 Software cache and eviction algorithm

Caching plays a vital role in modern data systems, enabling ef-
ficient data access across various scenarios. In compute-storage
disaggregated architectures, caching mitigates the high latency
of network-based data transfers [51, 59, 69]. Similarly, database
systems use caching to store frequently accessed data in memory,
reducing disk I/O and improving query response times.

At the core of effective caching lies the eviction algorithm, which
determines which objects remain in a cache when it reaches capac-
ity. Two of the most popular algorithms, Least Recently Used (LRU)
and First-In-First-Out (FIFO), represent two extremes in managing



Table 1: Descriptions of different Lazy PRoMOTION techniques.

Description

Deployed systems

Algorithm name | Algorithm parameter
Delay-LRU delay ratio
Probabilistic-LRU prob
Batch-LRU batch ratio
FIFO-reinsertion frequency bits
Random-LRU sample size

Skip recent promotions
Skip promotions by chance
Batch promotions between fixed intervals
Defers promotions to eviction
Sample eviction candidates and evict based on last access time

Meta Cachelib [18]
Meta HHVM [45]
CliqueMap [52], Ristretto [19]
RocksDB [21]

Redis [46]

cache hits, with respect to two critical metrics: efficiency (measured
by the miss ratio) and scalability (measured by throughput, or the
rate of requests served per second).

LRU and its variants are the most widely used algorithms in
production [2, 3, 18, 38, 41, 43, 56]. LRU retains the most recently
accessed objects, based on the principle that recently accessed pages
are likely to be reused in the near future [10, 17]. LRU usually
achieves high efficiency but poor scalability due to its need to pro-
motion: moving the accessed object to the head in a doubly linked
list , a process that must be protected by a global lock to ensure con-
sistency [49, 63]. This lock contention restricts throughput growth
as the number of CPU cores increases, making LRU poorly suited
for highly parallel environments, such as databases.

FIFO evicts the oldest objects without considering access pat-
terns. It excels in scalability without promotions or locking during
cache hits. However, its simplicity often results in poor efficiency,
as it fails to retain frequently accessed data. The two algorithms rep-
resent opposite ends of the spectrum: LRU promotes every object
upon a hit, while FIFO promotes none.

2.2 Lazy promotion techniques

To reduce the computation per cache hit and make LRU more scal-
able, LAzy PRoMOTION techniques have emerged in real-world sys-
tems as relaxations of the LRU algorithm [63]. These techniques
focus on reducing the frequency of promotions during cache hits
while maintaining low miss ratios. In this subsection, we describe
these Lazy PRoMOTION techniques, highlighting their underlying
intuitions and design principles with a summary in Table 1.
Probabilistic-LRU. A straightforward solution to reducing the
number of promotions is to avoid them when they become a bot-
tleneck. HHVM [45], developed by Meta, employs probabilistic
promotion using try-lock. Promotions are randomly skipped based
on lock availability: an object is promoted only when a thread suc-
cessfully acquires a lock using try-lock. If the lock is unavailable,
the promotion is bypassed. As a result, the likelihood of promotion
is directly tied to the thread’s ability to acquire the lock. Under high
contention, most promotions are bypassed to avoid waiting for the
lock, improving the scalability.

Batch-LRU. Because each promotion requires an expensive lock
operation, another solution to improve scalability is to increase
the critical section size and reduce the number of locking opera-
tions. For example, BP-wrapper [20] batches the LRU promotions
to improve scalability. Similarly, Google’s CliqueMap [52] is a dis-
tributed caching system that also uses Batch-LRU for eviction. In
distributed deployments, the cache resides on the server, and clients
use one-sided Remote Direct Memory Access (RDMA) to retrieve
data directly without communicating with the server. As a result,
the server remains unaware of the access pattern and cannot decide

which objects to evict when writing new objects. To address this
problem, clients periodically share requested objects with the cache
server using RPC. This allows the server to perform batched pro-
motions. This batching strategy reduces the promotion overhead
in distributed caches and the scalability bottleneck in local caches.
Delay-LRU. Most of the cache requests are for popular objects,
which do not require frequent promotion to stay in the cache. There-
fore, we do not need to promote an object if it was promoted re-
cently. Moreover, it takes a long time for a promoted object to
traverse through the cache before being evicted. As long as the next
promotion happens before eviction, it is sufficient. Leveraging this
insight, Meta CacheLib [11] uses Delay-LRU. It employs a tunable
parameter that controls the delay ratio, ensuring that promotions
are triggered only after a specified duration has elapsed since the
last promotion. Increasing the delay ratio reduces the number of
promotions, improving scalability; however, doing so also takes the
risk that useful objects might be evicted, increasing the miss ratio.
FIFO-reinsertion. A traditional solution to reduce promotion over-
head is to delay promotion until eviction time. The corresponding
algorithm has different names based on the underlying implemen-
tation, e.g., CLOCK, FIFO-Reinsertion, or Second Chance. In the
following text, we use FIFO-reinsertion to refer to this algorithm.
Because FIFO-reinsertion does not need to move the requested
object to the head upon each request, it can be implemented us-
ing a ring buffer or atomic updates on the linked list. This not
only improves throughput but also scalability. For example, the
new eviction algorithm for the block cache in RocksDB [21] and
PostgreSQL [47] uses FIFO-reinsertion to improve scalability
Random-LRU. Although a linked list is the most common data
structure for an LRU cache implementation, it brings the unavoid-
able scalability problem. An alternative approach to implement
an approximate LRU can leverage random sampling at eviction.
For example, Redis [46] employs a Random-LRU policy that ran-
domly samples k (e.g., 5) objects from the cache and evicts the least
recently used one among them. This approach addresses the scala-
bility issue of LRU by reducing the need for locking during cache
hits. Random-LRU does not need to maintain a fully ordered list.
Instead, each object tracks the last access time, updating which does
not require locking, thus improving the thread scalability. Although
Random-LRU is not a LAzy PRoMoTION technique technically be-
cause it does not perform any promotion, we include it in our study
because it is also an approximate LRU that improves scalability.

3 HOW DO EXISTING LAZY PROMOTION
TECHNIQUES PERFORM?

This section presents our benchmarks and measurements of differ-
ent LAzYy PROMOTION techniques.



Table 2: Datasets used in this work. For old datasets, we exclude traces with fewer than 1 million requests.

Trace Approx Cache timespan # Traces #Request Request # Object Object

collections time type (days) (million) (TB)  (million) (TB)
MSR [40] 2007  Block 7 14 410 9.8 73 3.0
FIU [33] 2008-11 Block 9-28 9 513 1.6 19 0.056
Cloudphysics [58] 2015  Block 7 106 2,115 80.7 492 21.9
CDN 1 2018  Object 7 301 3,429 3,227 237 207
Tencent Photo [75] 2018 Object 8 2 5,649 147 1,038 23.7
WikiMedia CDN [61] 2019  Object 7 4 12,400 195 249 13.1
Tencent CBS [71] 2020  Block 8 4,048 33,268 1,143 2,113 108
Alibaba [1, 36, 60] 2020 Block 30 609 20,038 647 1,676 112
Twitter [64] 2020 KV 7 51 233,965 103 17,342 4.9
CDN 2 2021  Object 7 1,205 20,470 2,079 1,232 732
Meta KV [4] 2022 KV 1 5 13,314 8.2 371 0.43
Meta CDN [4] 2023  Object 7 3 231 8,594 76 1,527

Dataset and testbed. We used a diverse set of real-world traces
from sources including Alibaba[25], CloudPhysics[58], FIU[33],
Meta, Tencent[70, 74], Wikipedia[61], and two private CDN service
companies for our measurements. These traces were collected be-
tween 2007 and 2023, covering key-value, block, and object caches.
Altogether, the datasets encompass 6357 traces with 346 billion re-
quests for 25 billion objects, with 16,625 TB of traffic for a total of
2,818 TB of data. More details can be found in Table 2.

Miss Ratio Measurement. We implemented each Lazy PRomo-
TION technique on top of libCacheSim [5] and replayed the traces
in our dataset to measure miss ratio. We evaluate each technique
using three cache sizes: 0.1%, 1%, and 10% of the working set size
(the total number of objects in the trace). Because the diverse traces
exhibit different access patterns, the miss ratios at the same cache
size, e.g., 1% of the working set size, can range from less than 1%
to more than 80%. We use the LRU miss ratio as a baseline, and
calculate the relative miss ratio as

miss, | miss Ry

for a technique A being studied. We present the results using box-
plots, where the box represents the 25th and 75th percentiles, and
the whiskers represent the 10th and 90th percentiles. We used a
cluster of ¢8220 nodes on Cloudlab for miss ratio measurements .
Scalability Measurement. We implemented concurrent versions
of each Lazy PRoMOTION technique. Unlike miss ratio measure-
ments, which can be performed in parallel, the throughput/scalabil-
ity measurements cannot be performed in parallel due to interfer-
ence. Moreover, running all 6,357 real-world traces for every Lazy
PromoTION technique and parameter configuration would require
over a year to complete. Therefore, we performed the scalability
measurement using a synthetic Zipfian trace consisting of 10 million
requests for 1 million unique objects, with a skewness parameter of
1.0. The Zipfian parameter was selected to capture the cache access
patterns observed in real-world workloads [8, 11, 13, 65]. Because
miss ratio can affect throughput, we chose different cache sizes
for different Lazy PRoMOTION techniques so that they all achieve
the same miss ratio. We experimented with both 10% and 1% miss
ratios; however, we only present the 1% miss ratio results due to

! As the miss ratio is deterministic and independent of the underlying hardware, the
specific hardware used does not affect the outcome of these measurements.

space constraints. For the ease of visualization, we normalized the
throughput of each Lazy PRoMOTION technique relative to the LRU
baseline by calculating the ratio

throughput s [throughputyry

for a Lazy PROMOTION technique A. All measurements were con-
ducted using r650 servers from Cloudlab, which are equipped with
dual Intel Xeon Platinum 8360Y 36-core processors and 256GB of
DDR4 DRAM. We disabled hyperthreading and turbo-boost, and
limited our benchmark to use only one NUMA domain to ensure
consistency across different benchmarks. Moreover, we repeated
each experiment five times using randomly generated Zipfian traces
and reported the mean results.

Promotion Measurement. While the throughput under different
numbers of threads shows scalability, the throughput results depend
on hardware and implementations. Therefore, we also measured the
number of promotions as a deterministic cost metric to capture the
benefit of Lazy PRoMOTION . Recall that each promotion requires
locking, which limits the scalability. Fewer promotions lead to fewer
lock operations and better scalability. This metric is also computed
relatively to LRU, as

# promos , [ # promos; p(;

for a Lazy PROMOTION technique A.
Promotion Efficiency Measurement. i.e.,

(#misspiro — #missa) [#promos,

We use FIFO as a baseline in this metric because it performs no
promotion and is the extreme of a LAzy PROMOTION technique.
A high promotion efficiency indicates that the promotions in the
technique are more valuable.

Although we performed measurements using three different
cache sizes —0.1%, 1%, and 10% of the working set size —we found
that the observations across different cache sizes are similar. There-
fore, we only present the results at the 1% cache size for space
reasons. We will include the results of different cache sizes in our
open-source repository.

3.1 Probabilistic-LRU
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Figure 2: Probabilistic-LRU skips promotions randomly based on a given parameter prob. It reduces the number of promotions proportionally to the
prob. However, the throughput does not increase significantly until the probability is reduced to very low. Meanwhile, Probabilistic-LRU increases miss ratio
even when the Probabilistic-LRU is low.
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Figure 3: Batch-LRU promotes objects in batches to reduce the number of promotions. A larger batch (batch ratio) leads to fewer promotions and

higher throughput, but also a higher miss ratio.

p = random(@,1)
if p < prob:
promote (obj)
Listing 1: promotion during cache hit in Probabilistic-LRU

The root cause of LRU’s poor scalability is the large number of pro-
motions and corresponding locking operations. Therefore, Probabi-
listic-LRU skips promotions randomly based on a given probability
prob, which ranges from 0 to 1. When prob is 1, Probabilistic-LRU
becomes LRU. When prob is 0, Probabilistic-LRU becomes FIFO 2.

By randomly skipping promotions, Probabilistic-LRU is very
effective at reducing the number of promotions. Figure 2a shows
that the number of promotions decreases proportionally with the
decrease of prob. For example, a prob of 0.1 can reduce the number
of promotions by 90%.

Although Probabilistic-LRU can significantly reduce the number
of promotions, we observe that the throughput does not increase
significantly when the probability is larger than 0.4 (Figure 2b).
Because Probabilistic-LRU skips promotions randomly without dis-
tinguishing popular and unpopular objects, popular objects still
have many promotions when using Probabilistic-LRU technique.
Moreover, the promotions of the same popular object are often per-
formed on different CPU cores, which incurs a non-trivial number
of CPU cache invalidation and coherence traffic. We conjecture that
this overhead from CPU cache management limits the throughput

2Although we describe prob as a constant, Probabilistic-LRU implementations in pro-
duction systems are often more complex, and prob may change based on contention [34]
as described in Section 2.2.

of Probabilistic-LRU. As a result, only when prob is very small, e.g.,
0.05 or 0.01, can we observe a significant throughput increase.

When prob is very small, many medium-popularity objects can-
not be promoted in a timely manner, which leads to a large increase
in miss ratio (fig. 2c). At a prob of 0.05, the miss ratio on 6357 traces
increases by 6% on average. Overall, Probabilistic-LRU cannot main-
tain a miss ratio similar to LRU. Even a large prob would increase
the cache miss ratio non-trivially. For example, at prob of 0.5, the
cache miss ratio increases by 2% on average.

Finding. Although Probabilistic-LRU is very effective in reducing
the number of promotions, the throughput only increases when
the prob is very small. However, at a very small prob, the miss
ratio increases significantly.

3.2 Batch-LRU

i batch_time = batch_ratio * cache_size
» batch.insert(obj)
; if time - last_prom_time >= batch_time:

4 for item in batch:
if item in cache:
6 promote (item)
batch.clear ()

Listing 2: promotion during cache hit in Batch-LRU

Because the locking operation at each promotion is computation-
ally expensive [20] and leads to contention, Batch-LRU performs
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Figure 4: Delay-LRU reduces cache promotions by skipping recently-promoted objects. When the delay ratio is 20% of the cache size, Delay-LRU
increases LRU’s miss ratio by no more than 0.1% while reducing the number of promotions by over 82% and increasing throughput by 7x.

promotions in batches to reduce the overhead and contention. In-
stead of immediately moving the requested object to the head of
the linked list, Batch-LRU tracks the requested object IDs in a buffer
and periodically promotes them. For 8-byte object id, a batch of 128
consumes only 1 KB, resulting in negligible memory overhead.

The efficiency and performance of Batch-LRU depend on one
parameter: batch ratio, which decides how often Batch-LRU per-
forms a batched promotion. For the sake of consistency in this
paper, we measure the time between promotions using insertion
time, which increments by one upon each insertion into the cache.
Therefore, a batch ratio of 0.1 means that there are 0.1xcache size
insertions between each batch promotion. The details can be found
in Listing 2.

Batching can effectively reduce the number of promotions be-
cause multiple promotions of a popular object are combined into a
single promotion; however, the reduction depends heavily on the
workload. Figure 3a shows that the variance in promotion reduction
is highly variable. Recall that each box shows the 25th and 75th per-
centiles of the 6357 traces. The long box indicates that some traces
enjoy a huge promotion reduction, while others do not observe
much benefit. For example, at a small batch ratio of 0.1, the number
of promotions on the mean and median trace can drop to 60% of
that in LRU, while the worst trace does not benefit from batched
promotion at all. We find that the effectiveness of Batch-LRU depends
on the skewness of the workload: a more skewed workload tends to
exhibit larger benefits because more requests are for a few popular
objects. Therefore, more requests in a batch are coalesced into a
single request.

Although Batch-LRU shows a large variance in promotion re-
duction, it is effective in improving throughput when the number
of promotions can be reduced. Figure 3b shows that even at a small
batch ratio of 0.1, the throughput increases by more than 4x at
16 threads. Further increasing the batch ratio leads to continued
throughput increase. Compared to Probabilistic-LRU, Batch-LRU
provides better scalability because Batch-LRU reduces more pro-
motions from popular objects while Probabilistic-LRU reduces pro-
motion for popular and unpopular objects with equal probability.

Besides being an effective scalability improvement technique,
Batch-LRU is also more effective in maintaining a low miss ratio.
Figure 3c shows that when the batch ratio is small, e.g., no more
than 0.5, the miss ratio increases for a median trace by less than 1%.
The reason is that Batch-LRU prioritizes reducing the promotion

2 if time

of popular objects, which are less likely to cause an increase in
the miss ratio. When batch ratio is very large, some objects in the
batch may have been evicted before they are promoted, leading to
an increased miss ratio.

Finding. Batch-LRU is an effective LAzy PROMOTION technique
as it can significantly reduce the number of promotions, leading
to better scalability. Meanwhile, Batch-LRU can maintain a miss
ratio similar to LRU. However, the effectiveness of Batch-LRU is
highly variable and heavily depends on the workload.

3.3 Delay-LRU

delay_time delay_ratio * cache_size
- obj.last_prom_time > delay_time:
promote (obj)

obj.last_prom_time

current_time

Listing 3: promotion during cache hit in Delay-LRU

Upon a cache hit, Delay-LRU checks and promotes only if suffi-
cient time has elapsed since the object’s last promotion. Although
this approach requires storing a timestamp for each object, a 4-byte
timestamp adds negligible 0.1% overhead to typical 4 KB objects.
Similar to Section 3.2, the delay time is measured using the number
of insertions. delay ratio is the ratio between delay time and cache
size, ranging from 0 to 1. A delay ratio of 1 would cause every object
to be evicted before promotion. Upon a cache hit, we compare the
last promotion time of the object and the current time to decide
whether the object should be promoted.

Compared to Probabilistic-LRU and Batch-LRU, Delay-LRU is
very effective at reducing the number of promotions. Figure 4a
shows that when delay ratio is 10% of cache size, the number of
promotions is reduced to 24% of that in LRU on average without
visibly increasing miss ratio. This indicates that around 76% of
promotions occur soon after the previous request to the same object,
and Delay-LRU can avoid these unnecessary promotions.

The significant reduction in the number of promotions allows
Delay-LRU to achieve notable scalability gains. At the 0.1 delay
ratio, Delay-LRU exhibits a 5x higher throughput than LRU at 16
threads (Figure 4b). As the delay ratio increases, the speedup further
increases and can achieve more than 12x throughput speedup at a
0.9 delay ratio. However, such a scalability improvement comes with
a cost on efficiency—the long delay ratio increases the miss ratio
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Figure 5: FIFO-reinsertion reduces both promotions and cache misses. The reduced promotions translate to a higher throughput. However, the
scalability upper bound is lower than other Lazy PRoMOTION techniques such as Delay-LRU.

by 6% on average on 6357 traces as shown in Figure 4c. Although
a large delay ratio leads to a high miss ratio, when the delay ratio
is small, the increase in the miss ratio is negligible. For example,
at a delay ratio of 0.1, adding delayed promotion to LRU does not
increase the miss ratio for 39.5% of the traces. This suggests that
although promotions are helpful for LRU in achieving a low miss
ratio, frequently promoting popular objects does not bring much
benefit, and we can skip these promotions without hurting the miss
ratio.

Both Batch-LRU and Delay-LRU prioritize reducing the promo-
tions of popular objects; however, Delay-LRU is more effective and
offers consistent benefits compared to Batch-LRU. For example, at
a delay ratio of 0.1, Delay-LRU achieves almost the same miss ratio
as LRU with a 5% higher throughput. To achieve a similar through-
put, Batch-LRU needs to use a batch ratio of 0.2, which has a miss
ratio 0.2% higher than LRU on average. Moreover, if we prefer a
higher throughput, Delay-LRU can provide more than 12x LRU’s
throughput, while Batch-LRU can only achieve at most 8.2x LRU’s
throughput 3. The reason behind Batch-LRU’s lower throughput is
that Batch-LRU needs to perform more work in the critical section.

Finding. Delay-LRU can effectively improve LRU’s scalability
with a minimal impact on efficiency. Its effectiveness remains
consistent across diverse workloads.

3.4 FIFO-reinsertion

obj_to_evict = queue.front()
while obj_to_evict.freq > 0:
-=1

obj_to_evict.next

obj_to_evict.freq
next_obj =
promote (obj_to_evict)
obj_to_evict = next_obj
evict(obj_to_evict)
Listing 4: FIFO-reinsertion performs promotion (reinsertion) during
cache eviction.

FIFO-reinsertion, as the name suggests, uses a FIFO queue to or-
der objects, and there is no change to the ordering during cache hits.
During cache evictions, popular objects at the tail are reinserted

3Note that because delay ratio and batch ratio are different, we cannot compare the
throughput and miss ratio of the same delay ratio and batch ratio. We should only
compare them under the same miss ratio or throughput.

into the cache. Unlike other Lazy PRoMOTION techniques that re-
duce the number of promotions at each cache hit, FIFO-reinsertion
delays the “promotion” to eviction time. Therefore, we count the
number of reinsertions as promotions.

Each object in FIFO-reinsertion is associated with a counter that
tracks the object’s access frequency. The counter is capped based on
the number of bits used. For example, a frequency bits of 1 caps the
maximum frequency at 1, effectively acting as a boolean variable. A
frequency bits of 3 caps the frequency at 7: objects accessed more
than 7 times in the cache are treated as 7. Upon a cache hit, the
counter increments by 1. During evictions, objects with a counter
larger than 0 are reinserted with the counter decremented by 1, and
objects with a frequency counter of 0 are evicted.

Figure 5a shows that the number of promotions (reinsertions)
can significantly reduce in FIFO-reinsertion, especially when the
number of frequency bits is small. When the number of frequency
bits increases, the number of promotions increases until it reaches
a plateau. This occurs because, after a certain threshold, increasing
the frequency cap further does not affect the reinserted objects, and
it is always the same set of objects that are being reinserted.

Similar to Delay-LRU and Batch-LRU, most of the promotion
reduction comes from popular objects. As a result, Figure 5b shows
that FIFO-reinsertion also enjoys a significant boost in throughput.
However, the highest throughput FIFO-reinsertion can achieve is
lower than Delay-LRU. Because Delay-LRU can reduce the number
of promotions by more than 95%, it can increase throughput by
more than 12X. In contrast, FIFO-reinsertion can only reduce the
number of promotions by 80% at frequency bits 1.

Although FIFO-reinsertion is slightly worse than Delay-LRU in
terms of scalability, it is more efficient. It is the only LAZy PROMOTION
technique that reduces LRU’s miss ratio. Figure 5c¢ shows that with
a 2-bit frequency counter, FIFO-reinsertion reduces LRU’s miss
ratio by almost 2% on average. Increasing the number of bits in the
frequency counter initially reduces the miss ratio but eventually
causes it to rise. This occurs because a large frequency cap causes
some short-lived popular objects to become stuck in the cache.
In such workloads, hot objects frequently change, but their high
frequencies prevent them from being evicted quickly.

Finding. FIFO-reinsertion is most effective when we use 1-bit or
2-bit counters. It not only improves scalability, but also improves
cache efficiency.
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Figure 6: Random-LRU samples objects and evicts the least-recently-
used one during eviction. Removing the global linked list allows it to be
more scalable than LRU. However, it underperforms LRU in efficiency.

3.5 Random-LRU

Random-LRU samples some objects from the cache during eviction
and evicts the least-recently used sample. It is not a LaAzy PRomoO-
TION promotion technique; however, it can also improve scalability.
Therefore, we add it to the discussion.

Because Random-LRU does not maintain a global linked list and
there is no locking during cache hits, it is more scalable than LRU.
Figure 6a shows that Random-LRU can achieve a throughput of 5x
higher than LRU. However, the improvement is smaller compared
to Delay-LRU due to the overhead of random sampling and lock-
ing during eviction. This overhead increases with the number of
samples. We can see that the throughput reduces to 3% that of LRU
when Random-LRU samples 128 objects at each eviction.

While Random-LRU improves scalability, Figure 6b shows that
it is lackluster in efficiency. Using just one sample, it becomes
the random eviction algorithm without using recency information.
We observe that it increases the miss ratio by 10% on average on
the 6357 traces. Increasing the number of samples reduces the
miss ratio. With 16 samples per eviction, we find that Random-
LRU achieves a similar miss ratio to LRU. Conventional wisdom
suggests that Random-LRU can achieve a miss ratio lower than
LRU for workloads that exhibit loop access patterns because such a
pattern causes thrashing for LRU when the loop size is larger than
the cache size. Surprisingly, this observation does not appear in our
evaluations. Although over 70% of the 6357 traces are block cache
workloads, which tend to have loop and scan access patterns, we
find LRU to be better than Random-LRU on less than 12% of the
traces under different sample sizes.

Finding. Random-LRU can improve scalability without compro-
mising the miss ratio but requires careful choice of parameters.
Using 16 samples per eviction provides a good balance. Increasing
the sample size reduces throughput, while reducing the sample
size increases the miss ratio.

3.6 Promotion efficiency

We have shown that different Lazy PRoMmoTION techniques perform
differently. Probabilistic-LRU can significantly reduce the number
of promotions with the cost of increasing miss ratio; Batch-LRU
heavily depends on the workload—very effective in reducing the
number of hits for some workloads without increasing miss ratio;
Delay-LRU performs the best in reducing the number of promo-
tions while maintaining miss ratio; FIFO-reinsertion, compared to

other LAzy PROMOTION techniques, not only reduces the number
of promotions but also reduces miss ratio.

To further characterize the effectiveness of promotion, we pro-
pose a new metric called “promotion efficiency”, which calculates
the misses that each promotion reduces from FIFO on average. If a
technique or algorithm can significantly reduce FIFO’s miss ratio
with very few promotions, then it has a high promotion efficiency.
Since FIFO has no promotion, it is not included in the figure. LRU
promotes upon each cache hit, most of which are unnecessary,
resulting in an average promotion efficiency of 0.037.

Probabilistic-LRU has a promotion efficiency similar to LRU
when prob is high (Figure 7a). However, when Probabilistic-LRU
drops to 0.01, we observe an increase in promotion efficiency. This
happens because when the probability of promotion is very low,
only very popular objects may be promoted. Unlike FIFO, which
does not keep popular objects in the cache, these occasional promo-
tions of very popular objects help keep them in the cache, driving
up promotion efficiency.

Figure 7b shows the promotion efficiency of Batch-LRU. We find
that across different batch ratios, promotion efficiency is consis-
tently low and not sensitive to batch ratio. This occurs because
Batch-LRU’s effectiveness depends on the workload and cannot
significantly reduce the number of promotions for many traces.

Compared to Probabilistic-LRU and Batch-LRU, Figure 7c shows
that Delay-LRU can achieve remarkably high promotion efficiency.
At a delay ratio of 0.4, each promotion in Delay-LRU can reduce 0.4
miss from FIFO. Further increasing the delay ratio to 0.9, Delay-LRU
can achieve the highest mean promotion efficiency among all Lazy
PromoTION techniques at 0.72. Because Delay-LRU reduces the
promotion of popular objects, which is very effective at identifying
and reducing the most useless promotions.

Figure 7d shows that FIFO-reinsertion has the highest promotion
efficiency when using a 1-bit counter. Using higher frequency caps
only reduces the promotion efficiency. This is because using more
bits to record frequency often leads to unnecessary promotions.

Among all the Lazy PRoMOTION techniques, we find that Delay-
LRU has the most efficient promotions. FIFO-reinsertion closely
follows Delay-LRU when using a 1-bit counter. Batch-LRU and
Probabilistic-LRU have the lowest promotion efficiency, and many
promotions do not reduce cache misses.

3.7 Lazy PromoTION on Advanced Eviction
Algorithms

Most advanced cache eviction algorithms designed in the past two
decades are built on top of one or more LRU queues using differ-
ent promotion metrics. For example, ARC[37], SLRU[27], 2Q[30],
MQ[76], and multi-generational LRU[44] leverage multiple LRU
queues to differentiate between frequently and infrequently ac-
cessed items. Others, such as LIRS[28] and LIRS2[73], retain an
LRU queue but apply different metrics, e.g., stack distance, to deter-
mine how to promote an object. Because these advanced algorithms
are built on top of LRU, they also suffer from limited scalability.
The Lazy PrRoMOTION techniques studied in this paper can also be
used to improve their scalability. We illustrate this with 2Q [30]
and ARC [37].
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Both 2Q and ARC comprise LRU queues that transition objects
from “recent” to “frequent” states to improve miss ratio (A; to Ap,
in 2Q; T; to T, in ARC). We refrain from interfering with the policy
decision to enter the frequent queue. We add LAzy PROMOTION to
the LRU queue for frequent objects in each algorithm, i.e., within
Ap, (2Q) and T (ARC), to regulate in-queue promotions.

We have examined the impact of parameters on each LAzy Pro-
MOTION technique in this section. We will use 0.5 for the rest of the
sections so that we only have one box for each technique. Figure 8
shows that ARC and 2Q exhibit patterns similar to those observed
on LRU: delay and reinsertion are more effective than batch and
probabilistic promotion. Delay can significantly reduce promotions
without significantly increasing the miss ratio, while reinsertion
can reduce both the miss ratio and the number of promotions.
Moreover, the effectiveness of batching promotions is workload-
dependent—some workloads benefit more, while others benefit less.
These results indicate that LP’s benefits are not artifacts of a single
policy, but rather arise from suppressing low-value promotions that
are common in LRU-style designs.

4 CANLAZY PROMOTIONS BE LAZIER WITH
FUTURE INFORMATION?

Lazy PRoMmoTION techniques have shown that reducing the num-
ber of promotions in caching systems can significantly enhance
scalability without sacrificing the miss ratio. In this section, we in-
vestigate whether ranking, the goal of promotion, is fundamentally
necessary and whether LAzy PROMOTION can be even lazier if we
have oracle information. More specifically, we use oracle future
knowledge as an analytical tool to establish an upper bound on how
few promotions are fundamentally needed. We first use the future
access time obtained from offline analysis to perform early evic-
tion and find that ranking is mostly unnecessary if we can predict
whether an object will be requested before it is evicted (Section 4.1).
Building on this insight, we find that using future information in

FIFO-reinsertion not only reduces the number of promotions to
6%, but also reduces the miss ratio by more than 1% (Section 4.2),
compared to LRU.

4.1 Object ranking is unnecessary

In this subsection, we evaluate whether ranking objects in the cache
is necessary to obtain a low miss ratio.

Belady early eviction. Traditional Belady evicts the object with
the longest future reuse distance whenever space is needed. We
extend this idea by allowing eviction at insertion and request time: if
the next use of an object is too far in the future, it can be discarded
immediately. We refer to this as Belady early eviction (BEE). Because
BEE only requires a binary decision from the oracle—whether this
object will be used before being evicted—it is essentially easier to
predict than the exact reuse time.

Oracle definition. Let R(0) denote the reuse distance (number
of requests until the next access) of object o, and let S denote the
average eviction age measured in the number of requests. Under
Oracle knowledge, early eviction is:

evict o at access time if R(0) > S.

Approximate oracle form. In practice, the average eviction age
S is not directly observable and changes with decisions on other
objects. We approximate it by
$ a cache size
miss ratio’

To tolerate estimation error, we introduce a tolerance factor a > 1:
evict o if R(0) > « - S.

Here, @ = 1 applies the strict estimator, while & > 1 retains objects
more conservatively. When Belady early eviction cannot remove
enough objects, we use Random-LRU and Random for eviction,
denoted as Belady-RandomLRU and Belady-Random, respectively.
Ranking objects for eviction is not important. Figure 9a and
Figure 9b show that BEE significantly reduces miss ratio compared
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to LRU, achieving a 14% average reduction at tolerance factor 5.
Moreover, Belady-RandomLRU and Belady-Random exhibit similar
miss ratios across tolerance factors (except at o), indicating that
the choice of the fallback eviction algorithm is largely unimportant
in the presence of early-eviction signals. In other words, ranking
cached objects for eviction—i.e., promotion—is not important. In
particular, Belady-Random and Belady-RandomLRU do not rely on
promotions; they primarily use future reuse distances to drive most
evictions (Figure 9c) and, by proactively removing cold objects,
achieve lower miss ratios than LRU without ranking.

If we employ a binary classifier to predict whether an object
will be reused before being evicted. The model can be used to
trigger early eviction. This differs from existing learned eviction
algorithms, e.g., LRB [54], which predict each object’s reuse distance
using regression as an objective *.

This observation also explains why the new eviction algorithm,
such as S3-FIFO [67] and SIEVE [72], achieves state-of-the-art ef-
ficiency. They evict new objects quickly (called quick demotion)
without ranking, but can still achieve a low miss ratio.

4.2 Lazier upon cache misses

We have demonstrated that most of the promotions in the cache are
unnecessary if we have future information. However, the previous
section assumes that the cache can evict objects at any time and
requires a binary prediction to be made at each request, which is
computationally expensive. In this section, we study how future
information can help FIFO-reinsertion, which limits promotion
and thus binary prediction to eviction time. Specifically, we design

4Binary classification is simpler than multi-class classification, which is often simpler
than regression.

offline FIFO-reinsertion by not promoting an object if its next access
time is too far in the future. For any request sequence and cache
capacity C, policies that promote objects on hits offer no additional
benefit once promotion at eviction is allowed. A policy that only
promotes at eviction time is guaranteed to be as good as any policy
that promotes at object access time. Moreover, promotion decisions
at eviction time can leverage more information.

Offline FIFO-reinsertion design. Building on FR, we design Of-
fline FIFO-reinsertion, which runs multiple iterations through a
trace. The zeroth iteration is the same as FIFO-reinsertion, how-
ever, we mark the promotions (reinsertions) that do not lead to
a cache hit. In subsequent iterations, the marked promotions are
not performed. Therefore, some promotions are reduced in each
iteration.

Offline FR reduces both promotions and miss ratios. Fig-
ure 10a shows that offline FIFO-reinsertion can reduce promotions
from LRU by more than 90%, demonstrating the huge potential.
Reducing the number of promotions in offline FIFO-reinsertion
does not bring the side effect of increasing miss ratio. We observe
that offline FIFO-reinsertion achieves a lower miss ratio compared
to FIFO-reinsertion (Figure 10b), with consistent reductions in both
median and mean. As the number of iterations increases, the num-
ber of promotions and the miss ratio start to converge.

Figure 10c shows promotion efficiency of offline FIFO-reinsertion.
We find that filtering out unnecessary promotions significantly
improves promotion efficiency, achieving over 0.8—each promotion
reduces 0.8 cache misses. This suggests that promotion at eviction
is sufficient to achieve both a low number of promotions and a low
miss ratio, and the future LAozy PRoMOTION techniques can be built
on top of a FIFO queue using FIFO-reinsertion.
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5 PRACTICAL LAZIER PROMOTION

The previous section shows that promotion and ranking objects
are not important: if we have future information, we can further
reduce the number of promotions without increasing the miss ratio.
This section demonstrates how to achieve this goal without relying
on future information.

In Section 5.1, we introduce Delayed FIFO-reinsertion (D-FR),
a practical enhancement to FIFO-reinsertion inspired by Delay-
LRU. D-FR reduces both promotions and miss ratios compared to
FIFO-reinsertion, however, the promotion reduction is limited. In
Section 5.2, we introduce Age-Guided Eviction (AGE). AGE uses re-
cency to predict whether a promotion will be useful during eviction
and discards unnecessary promotions. Compared to D-FR, AGE can
reduce more promotions; however, it increases the miss ratio for
some traces compared to FIFO-reinsertion.

5.1 Delayed FIFO-reinsertion (D-FR)

delay_time = delay_ratio x cache_size

» # On access

3t o=

current_time - obj.access_time
if t > delay_time:
obj.freq += 1

obj.access_time = current_time

Listing 5: Delayed FIFO-reinsertion

Section 3.3 shows that Delay-LRU consistently achieves the best
promotion efficiency while keeping the miss ratio close to that
of LRU, indicating that many promotions occur too soon after a
previous one and bring little value. This suggests two principles:
(1) do not reward multiple hits in a short window, and (2) if we
must reward, do it at the eviction time, where the decision is most
informed. Building on these, we design D-FR, which does not incre-
ment the frequency counter upon clustered hits. More specifically,
D-FR tracks the last access and insertion time. If the current hit
falls within a delay-time threshold, the frequency counter will not
increment. Similar to Delay-LRU, D-FR adds a 4-byte timestamp.
The computational overhead from conditional checks (metadata
read from CPU cache) is outweighed by the reduction in promo-
tions (metadata write), yielding a 5% throughput increase over
FIFO-reinsertion in our evaluations.

Figure 11 shows that compared to FIFO-reinsertion, D-FR fur-
ther reduces the number of promotions by 60% for a median trace.

» threshold =
; obj_to_evict =

Meanwhile, it also reduces the miss ratio similar to offline FIFO-
reinsertion. As a result, D-FR achieves a higher promotion efficiency
compared to existing LAzy PRoMOTION techniques.

The results in Figure 11 use a default frequency bit of 1 and a
delay ratio of 5%. We study the sensitivity of delay time in Figure 12.
We find that D-FR is not sensitive to the delay ratio, and different
ratios show similar results. Choosing a larger delay ratio allows for
a greater promotion reduction, albeit at the cost of slightly higher
miss ratios. However, unlike Delay-LRU, which increases the miss
ratio over LRU, D-FR can consistently achieve a miss ratio lower
than LRU.

5.2 Age guided eviction (AGE)

# Eviction

cache_size / miss_ratio * factor
queue . front ()

while obj_to_evict.freq > 0:

obj_to_evict.freq -= 1
t = obj_to_evict.last_access_time
age = current_time - t

if (age >= threshold):

break # evict the object
else:

# check the next object

Listing 6: Age guided eviction (AGE)

FIFO-reinsertion makes promotion decisions based on frequency
without considering recency information. To further reduce un-
necessary promotions in FIFO-reinsertion, we design AGE, which
leverages object age as a filter. If the time since the last access to
an object has been very long, the object may be unpopular, and the
likelihood of it receiving a request will be low. Therefore, AGE does
not promote objects whose age exceeds a threshold. It calculates
the threshold similar to BEE (section 4.1) with a tolerance factor
(listing 6).

Figure 11 shows that AGE has fewer promotions than D-FR with
increased miss ratio. However, unlike D-FR, which reduces miss ra-
tio over FIFO-reinsertion, AGE achieves a similar or slightly higher
miss ratio compared to FIFO-reinsertion. As a result, it achieves
a similar promotion efficiency to D-FR, around 48%, and both are
significantly higher than FIFO-reinsertion, at approximately 24%.
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Figure 13: Age is not sensitive to the factor parameter.

We show AGE with a tolerance factor of 0.5 in Figure 11. To
evaluate the sensitivity, we evaluate a wide range of factors in Fig-
ure 13. We find that it is straightforward to choose this parameter. A
smaller factor reduces promotions more aggressively, while leading
to a higher miss ratio; a larger factor has a smaller impact on both
promotions and miss ratios. Increasing the factor over a certain
threshold results in zero promotions being filtered out, yielding the
same algorithm as FIFO-reinsertion.

6 RELATED WORK

We have covered the most relevant works in Section 2. This sec-
tion provides additional works related to caching and workload
measurements.

Cache efficiency and scalability. The concept of Lazy PRomO-
TION is first introduced in a HotOS work [63], where the authors
show that eviction algorithms should use lazy promotion to im-
prove throughput and scalability, and quick demotion to improve
efficiency. However, it does not delve into different lazy promo-
tion techniques. Many other works also improve a cache’s effi-
ciency by designing a better eviction algorithm, such as ARC [37],
LIRS [28, 35, 73], TinyLFU [23, 68], 20 [30], LRFU [22], GDSF [14],
LeCaR [57], CACHEUS [50], LHD [9], LRB [54], HALP [55], GL-
Cache [62], SIEVE [72]. Most of these algorithms typically have
lower throughput compared to LRU due to computational over-
head. There are also many works that improve the throughput
and scalability of caches, such as MemC3 [24], Segcache [66], and
BP-wrapper [20]. Unlike traditional system designs, this work fo-
cuses on understanding different techniques that have already been
deployed in production.

Workloads and performance measurement. This work uses
6357 traces to characterize different LAzy PRoMOTION techniques.
Many previous works have characterized production systems or
studied the workloads of production systems. Juncheng performed a

detailed study of over 100 Memcached cache clusters at Twitter [64];
Siying conducted a comprehensive study of the RocksDB deploy-
ments at Meta [21]; Nishtala and Atikoglu studied the Memcached
deployment challenges and workloads at Meta [8, 42]. Additionally,
Alibaba and Tencent have conducted detailed workload studies on
their elastic block storage cloud offerings [36, 70]. Moreover, while
many studies on eviction-algorithm design evaluate multiple algo-
rithms [12, 26, 32, 54, 72], they rarely examine in depth those not
proposed in the paper. Ziyue shows that aggressively increasing hit
ratio can hurt cache throughput due to contention on promotion,
but our work demonstrates that suppressing low-value promotions
can simultaneously preserve miss ratio and significantly improve
scalability [48]. To the best of our knowledge, this work is the first
to examine the effectiveness of the widely deployed lazy promotion
techniques.

7 CONCLUSION

Although Lazy PrRomMOTION techniques are widely used in produc-
tion systems, there has been very limited understanding about their
effectiveness. This paper presents a comprehensive evaluation of
Lazy PRoMOTION techniques in cache evictions. We find that Delay-
LRU and FIFO-reinsertion are effective at reducing promotions
while maintaining miss ratios. However, promotion reductions in
Probabilistic-LRU come at a cost of increased miss ratios, and Batch-
LRU is heavily workload-dependent. In addition, we identify that
most cache promotions are unnecessary, exposing considerable op-
portunities for optimization. We introduce two new simple methods,
D-FR and AGE, and demonstrate that they can effectively reduce
the number of promotions without compromising miss ratios.
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